Respuesta :

Answer:

A

Step-by-step explanation:

To multiply powers of a variable, add the exponents:

[tex]x^m\cdot x^n = x^{m+n}[/tex]

This rule works for all exponents, positive, negative, or zero.  Also, remember that [tex]x^0=1[/tex].

Also, remember the definition of negative exponent:  [tex]x^{-n} = \frac{1}{x^n}[/tex]

To multiply the two monomials, start by multiplying the coefficients, 14 and 4.  That gives 56, so your answer begins with 56.

Now for the powers of x,  [tex](x^3)(x^{-5}) = x^{3+(-5)} =x^{-2} = \frac{1}{x^2}[/tex]

For the powers of y,  [tex](y^{-4})(y^4)=y^{4+(-4)} = y^0 = 1[/tex][tex](y^{-4})(y^4) = y^{-4+4} = y^0 =1[/tex]

Your answer is

[tex]56 \cdot \frac{1}{x^2} \cdot 1 =\frac{56}{x^2}[/tex]