Will mark branliest. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17? ​

Respuesta :

Answer:

Step-by-step explanation:

Let  n=2α⋅5β⋅m , where  gcd(m,10)=1 . Then, the decimal expansion of  1n  is of the form

0.a1…akak+1…ak+ℓ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(1) ,

where  k=max{α,β}  and  ℓ  is the least positive integer for which  m∣(10ℓ−1) . In other words,  ℓ  is the order of  10  in the multiplicative group of units modulo  m . So  ℓ∣ϕ(m)  by Lagrange's theorem.

In particular, if  gcd(n,10)=1 , then  α=β=k=0 ,  m=n , and

1n=0.a1…aℓ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(2)  

Therefore, we know that

117=0.a1…aℓ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(3)  

Here  ℓ  is the least positive integer for which  17  divides  9…9ℓtimes , and we know that  ℓ  divides  ϕ(17)=16 .

Successively squaring  10  modulo  17  gives

102≡−2(mod17),104≡4(mod17),108≡−1(mod17),1016≡1(mod17) .

So  ℓ=16  in expansion  (3) .

In fact,

a1…a16×17=1016–1.  

a1…a8+a9…a16=108−1 .

The first fact has nothing to do with the denominator  n  being prime. The second fact has everything to do with  n  being prime, and was discovered by E. Midy in  1836 .