Respuesta :

Given:

In triangle [tex]ABC,m\angle A=138^\circ,c=19,a=29[/tex].

To find:

The [tex]m\angle C[/tex].

Solution:

According to the law of sines:

[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]

Taking [tex]\dfrac{\sin A}{a}=\dfrac{\sin C}{c}[/tex], we get

[tex]\dfrac{\sin 138^\circ}{29}=\dfrac{\sin C}{19}[/tex]

[tex]\dfrac{0.66913}{29}\times 19=\sin C[/tex]

[tex]0.4383959=\sin C[/tex]

Taking sin inverse on both sides, we get

[tex]\sin{-1}0.4383959=C[/tex]

[tex]26.001577^\circ=C[/tex]

[tex]C\approx 26^\circ[/tex]

Therefore, the correct option is b.