Respuesta :

Answer:

[tex]a_{20} = 1/1048576[/tex]

Step-by-step explanation:

Given

[tex]Sequence: -1/2;1/4;-1/8;1/16[/tex]

Required

Determine [tex]a_{20[/tex]

Since it is a geometric sequence, first we need to calculate the common ratio (r)

[tex]r = \frac{a_2}{a_1}[/tex]

From the sequence:

[tex]a_2 = 1/4[/tex]

[tex]a_1 = -1/2[/tex]

[tex]a_1[/tex] is the same as [tex]a[/tex]

So:

[tex]r = \frac{a_2}{a_1}[/tex]

[tex]r = \frac{1/4}{-1/2}[/tex]

[tex]r = -1/2[/tex]

[tex]a_{20[/tex] is then calculated as:

[tex]a_n = ar^{n-1}[/tex]

Where

[tex]n = 20[/tex]

[tex]a_{20} = ar^{20-1}[/tex]

[tex]a_{20} = ar^{19}[/tex]

[tex]a_{20} = (-1/2) * (-1/2)^{19}[/tex]

Apply law of indices

[tex]a_{20} = (-1/2)^{1+19}[/tex]

[tex]a_{20} = (-1/2)^{20}[/tex]

Evaluate the exponent

[tex]a_{20} = 1/1048576[/tex]