Respuesta :
Missing part of the question
Some parts of California are particularly earthquake-prone. Suppose that in one metropolitan area, 25% of all homeowners.....................
Answer:
[tex]P(X = x) = ^4C_x * 0.25^x * 0.75^{4-x}[/tex]
[tex]Mean = 1[/tex]
[tex]Pr = 0.2617[/tex]
Step-by-step explanation:
Given
[tex]n = 4[/tex]
[tex]p = 25\%[/tex]
Solving (a): The probability distribution of x
We have:
[tex]n = 4[/tex]
[tex]p = 25\%[/tex] [tex]= 0.25[/tex]
The probability of not having earthquake insurance (q) is:
[tex]q = 1 - p[/tex]
[tex]q = 1 - 0.25[/tex] [tex]= 0.75[/tex]
If x has insurance, then n - x do not.
The distribution follows a binomial pattern. So, the probability distribution is:
[tex]P(X = x) = ^nC_x * 0.25^x * 0.75^{n-x}[/tex]
Substitute 4 for n
[tex]P(X = x) = ^4C_x * 0.25^x * 0.75^{4-x}[/tex]
Solving (b): The most likely value of x i.e. The mean
We have:
[tex]n = 4[/tex] and
[tex]p = 25\%[/tex] [tex]= 0.25[/tex]
[tex]Mean = np[/tex]
[tex]Mean = 4 * 0.25[/tex]
[tex]Mean = 1[/tex]
Solving (c): At least 2 of 4 selected have earthquake insurance.
This is calculated as
[tex]Pr = P(x = 2) + P(x = 3) + P(x = 4)[/tex]
[tex]P(X = x) = ^4C_x * 0.25^x * 0.75^{4-x}[/tex]
[tex]P(X=2) = ^4C_2 * 0.25^2 * 0.75^{4-2}[/tex]
[tex]P(X=2) = 6 * 0.25^2 * 0.75^2 = 0.2109375[/tex]
[tex]P(X=3) = ^4C_3 * 0.25^3 * 0.75^{4-3}[/tex]
[tex]P(X=3) = 4 * 0.25^3 * 0.75 = 0.046875[/tex]
[tex]P(X=4) = ^4C_4 * 0.25^4 * 0.75^{4-4}[/tex]
[tex]P(X=4) = 1 * 0.25^4 * 1= 0.00390625[/tex]
So:
[tex]Pr = P(x = 2) + P(x = 3) + P(x = 4)[/tex]
[tex]Pr = 0.2109375 + 0.046875 + 0.00390625[/tex]
[tex]Pr = 0.26171875[/tex]
[tex]Pr = 0.2617[/tex] --- approximated