Answer:
(a)
[tex]\begin{array}{cccc}{X} & {-\$1.00} & {\$0.00} & {\$4.00} \ \\ {P(X)} & {0.75} & {0.125} & {0.125} & \ \end{array}[/tex]
(b)
[tex]E(x) = -\$0.25[/tex]
Step-by-step explanation:
Given
See attachment for spinner
Solving (a): Complete the table
The amount paid is: $1
From the attached image, we have:
$0 = 6; $1 = 1; $5 = 1
To get the profit, we subtract $1 from the possible outcomes of the spinner.
So, we have:
-$1.00 = 6; $0.00 = 1; $4.00 = 1
The probability of each is then calculated as:
[tex]P(-\$1.00) = \frac{6}{8} = 0.75[/tex]
[tex]P(-\$0.00) = \frac{1}{8} = 0.12[/tex]
[tex]P(-\$4.00) = \frac{1}{8} = 0.12[/tex]
So, the complete table is:
[tex]\begin{array}{cccc}{X} & {-\$1.00} & {\$0.00} & {\$4.00} \ \\ {P(X)} & {0.75} & {0.125} & {0.125} & \ \end{array}[/tex]
Solving (b): The expected profit E(x)
This is calculated as:
[tex]E(x) = \sum x * P(x)[/tex]
[tex]E(x) = -1.00 * 0.75 + 0.00 * 0.125 + 4 * 0.125[/tex]
[tex]E(x) = -\$0.25[/tex]