Respuesta :

I need more points sorry

Answer:

[tex]\boxed {\boxed {\sf 17.3 \ L \ F_2}}[/tex]

Explanation:

First, we must convert molecules to moles.

We use Avogadro's Number: 6.022*10²³. This number tells us the amount of particles (atoms, molecules, etc.) in 1 mole of a substance. In this case, it is molecules of F₂

[tex]\frac{ 6.022*10^{23} \ molecules \ F_2}{1 \ mol \ F_2}[/tex]

Multiply by the given number of molecules.

[tex]4.65 *10^{23} \ molecules \ F_2*\frac{ 6.022*10^{23} \ molecules \ F_2}{1 \ mol \ F_2}[/tex]

Flip the fraction so the molecules of fluorine cancel.

[tex]4.65 *10^{23} \ molecules \ F_2*\frac{1 \ mol \ F_2 }{6.022*10^{23} \ molecules \ F_2}[/tex]

[tex]4.65 *10^{23} *\frac{1 \ mol \ F_2 }{6.022*10^{23} }[/tex]

[tex]\frac{4.65 *10^{23} \ mol \ F_2 }{6.022*10^{23} }=0.7721687147 \ mol \ F_2[/tex]

Next, convert the moles to liters. Assuming this is at STP (standard temperature and pressure), there are 22.4 liters in 1 mole of any gas.

[tex]\frac {22.4 \ L \ F_2} {1 \ mol \ F_2}[/tex]

Multiply by the number of moles we calculated.

[tex]0.7721687147 \ mol \ F_2*\frac {22.4 \ L \ F_2} {1 \ mol \ F_2}[/tex]

The moles of fluorine cancel.

[tex]0.7721687147 *\frac {22.4 \ L \ F_2} {1 }[/tex]

[tex]0.7721687147 *\ {22.4 \ L \ F_2} =17.29657921 \ L \ F_2[/tex]

The original measurement has 3 significant figures (4, 6, and 5), so our answer must have the same. For the number we calculated, that is the tenth place. The 9 in the hundredth place tells us to round the 2 up to a 3.

[tex]17.3 \ L \ F_2[/tex]

There are approximately 17.3 liters of fluorine.