Which product of prime polynomials is equivalent to 3x4 – 81x?

3x(x – 3)(x2 – 3x – 9)
3x(x – 3)(x2 + 3x + 9)
3x(x – 3)(x – 3)(x + 3)
3x(x – 3)(x + 3)(x + 3)

Respuesta :

Given:

The expression is

[tex]3x^4-81x[/tex]

To find:

The product of prime polynomials which is equivalent to the given expression.

Solution:

We have,

[tex]3x^4-81x[/tex]

Taking out the common factors, we get

[tex]=3x(x^3-27)[/tex]

It can be written as

[tex]=3x(x^3-3^3)[/tex]

[tex]=3x(x-3)(x^2+3x+3^2)[/tex]        [tex][\because a^3-b^3=(a-b)(a^2+ab+b^2)][/tex]

[tex]=3x(x-3)(x^2+3x+3^2)[/tex]

[tex]=3x(x-3)(x^2+3x+9)[/tex]

Therefore, the correct option is B.

Answer:

It's B

Step-by-step explanation: