Respuesta :

Nayefx

Answer:

[tex] \sf \huge \boxed{ \boxed{(b + \frac{2}{3} )(b - \frac{2}{3} )}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • algebra
  • PEMDAS

tips and formulas:

  • [tex] {x}^{2} - {y}^{2} = (x + y)(x - y)[/tex]

let's solve:

  1. [tex] \sf \: rewrite : \\ ( {b})^{2} - ( \frac{2}{3} {)}^{2} [/tex]
  2. [tex] \sf use \: the \: formula : \\ (b + \frac{2}{3} )(b - \frac{2}{3} )[/tex]

msm555

Answer:

Solution given:

[tex]b^{2} -\frac{4}{9}[/tex]=[tex]b^{2} -\frac{2^2}{3^2}=b^2 -(\frac{2}{3})^2[/tex]

it is in the form of x²-y²=(x+y)(x-y)

so

[tex]b^2 -(\frac{2}{3})^2=(b+\frac{2}{3})(b-\frac{2}{3})[/tex] is A required polynomial.

Step-by-step explanation: