Respuesta :
Answer:
[tex] \sf \huge \boxed{ \boxed{(b + \frac{2}{3} )(b - \frac{2}{3} )}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- algebra
- PEMDAS
tips and formulas:
- [tex] {x}^{2} - {y}^{2} = (x + y)(x - y)[/tex]
let's solve:
- [tex] \sf \: rewrite : \\ ( {b})^{2} - ( \frac{2}{3} {)}^{2} [/tex]
- [tex] \sf use \: the \: formula : \\ (b + \frac{2}{3} )(b - \frac{2}{3} )[/tex]
Answer:
Solution given:
[tex]b^{2} -\frac{4}{9}[/tex]=[tex]b^{2} -\frac{2^2}{3^2}=b^2 -(\frac{2}{3})^2[/tex]
it is in the form of x²-y²=(x+y)(x-y)
so
[tex]b^2 -(\frac{2}{3})^2=(b+\frac{2}{3})(b-\frac{2}{3})[/tex] is A required polynomial.
Step-by-step explanation: