Respuesta :

Answer:

The absolute minimum of the function [tex]f(x) = x^{4} - 4\cdot x - 3[/tex] occurs at [tex]x = 1[/tex] and is [tex]f(1) = -6[/tex].

Explanation:

Statement is incorrect. Correct statement is presented below:

Given the function [tex]f(x) = x^{4}-4\cdot x - 3[/tex], determine the absolute minimum value of [tex]f[/tex] on the closed interval [tex](-2, 4)[/tex]. First, we determine the first and second derivatives of the function.

First Derivative

[tex]f'(x) = 4\cdot x^{3}-4[/tex] (1)

Second Derivative

[tex]f''(x) = 12\cdot x^{2}[/tex] (2)

By equalizing (1) to zero, we solve for [tex]x[/tex]:

[tex]4\cdot x^{3}-4 = 0[/tex]

[tex]x^{3}= 1[/tex]

[tex]x = 1[/tex]

And we evaluated this result in (2):

[tex]f''(1) = 12[/tex]

According to criteria of the Second Derivative Test, we conclude that value of [tex]x[/tex] leads to an absolute minimum. The value of the absolute minimum is:

[tex]f(1) = -6[/tex]

The absolute minimum of the function [tex]f(x) = x^{4} - 4\cdot x - 3[/tex] occurs at [tex]x = 1[/tex] and is [tex]f(1) = -6[/tex].