Respuesta :
The minimum value for z = 3 x - 1/2 y over the feasibility region is where x has the minimum value and y has the maximum value.
x ≥ 0, y ≤ 8, y ≥ x and y ≥ - 1/2 x + 6
Those values are: x = 0 and y = 8
z min = 3 · 0 - 1/2 · 8 = 0 - 4 = - 4
Answer: A ) - 4
x ≥ 0, y ≤ 8, y ≥ x and y ≥ - 1/2 x + 6
Those values are: x = 0 and y = 8
z min = 3 · 0 - 1/2 · 8 = 0 - 4 = - 4
Answer: A ) - 4
Answer:
Step-by-step explanation:
My answer is:
The constraints are x≥0, y≤8, y≥x and y≥[tex]-\frac{1}{2}+6[/tex].
(x,y) [tex]z=3x-\frac{1}{2}y[/tex]
(0,6) [tex]z=3(0)-\frac{1}{2}(6)=-3[/tex]
(0,8) [tex]z=3(0)-\frac{1}{2}(8)=-4[/tex]
(4,4) [tex]z=3(4)-\frac{1}{2}(4)=10[/tex]
(8,8) [tex]z=3(8)-\frac{1}{2}(8)=20[/tex]
The minimum value is -3 or -4. -3 occurs at (0,6) And -4 occurs at (0,8). I'm putting -3 as my answer on my test and I'll post the correct answer if its wrong.