Determine which system below will produce infinitely many solutions.

A. -6x+3y=18
4x-3y=6

B. 2x+4y=24
6x+12y=36

C. 3x-y=14
-9x+3y=-42

D. 5x+2y=13
-x+4y=-6

i really need help

Respuesta :

Correct answer is C.

System of two equivalent equations will produce infinitely many solutions.
[tex]3x-y=14[/tex]
Multiply by (-3)
[tex](-3)3x-(-3)y=(-3)14 \\-9x+3y=-42[/tex]
So it is equivalent to the second equation.

Answer:

The answer is the option C

[tex]3x-y=14[/tex]

[tex]-9x+3y=-42[/tex]

Step-by-step explanation:

case A) we have

[tex]-6x+3y=18[/tex] ------> equation A

[tex]4x-3y=6[/tex] ------> equation B

Adds equation A and equation B

[tex]-6x+3y=18 \\4x-3y=6\\--------- \\-6x+4x=18+6 \\-2x=24 \\ x=-12[/tex]

Find the value of y

substitute in the equation A the value of x

[tex]-6(-12)+3y=18[/tex]

[tex]3y=18-72[/tex]

[tex]y=-18[/tex]

therefore

the system case A) has one solution

case B) we have

[tex]2x+4y=24[/tex] ------> equation A

[tex]6x+12y=36[/tex] ------> equation B

Multiply by [tex]3[/tex] equation A

[tex]3(2x+4y)=3*24[/tex]

[tex]6x+12y=72[/tex]

so

Equation A and equation B are parallel lines

therefore

the system case B) has no solution

case C) we have

[tex]3x-y=14[/tex] ------> equation A

[tex]-9x+3y=-42[/tex] ------> equation B

Multiply by [tex]3[/tex] equation A

[tex]3(3x-y)=3*14[/tex] -------> [tex]-9x+3y=-42[/tex]

Equation A and equation B are the same line

therefore

the system case C) has infinitely solutions

case D) we have

[tex]5x+2y=13[/tex] ------> equation A

[tex]-x+4y=-6[/tex] ------> equation B

Multiply by [tex]5[/tex] equation B

[tex]5(-x+4y)=-6*5[/tex]

[tex]-5x+20y=-30[/tex] -------> equation C

Adds equation A and equation C

[tex]5x+2y=13\\-5x+20y=-30\\------------\\2y+20y=13-30 \\22y=-17 \\y=-0.77[/tex]

Substitute the value of y in the equation B

[tex]-x+4(-0.77)=-6[/tex]

[tex]-x=-6+3.09[/tex]

[tex]x=2.91[/tex]

the system case D) has one solution