Respuesta :
answer = 113.1m²
Using the formulas
- A=πr2
- d=2r
Solving forA
- A=1
- 4πd2=1
4·π·122≈113.09734m²
__________________________________
this is your answer
[tex] \Large \underline{\tt Given} :[/tex]
- Diameter of circular pound = 12 m
[tex] \\ [/tex]
[tex] \Large \underline{\tt To \: Find} :[/tex]
- Area of circular pound = ?
[tex] \\ [/tex]
[tex] \Large \underline{\tt Solution} :[/tex]
As, pound in circular in shape, so to find it's area we have a formula :
[tex]\underline{\boxed{\bf{Area_{(circle)} = \pi r^2}}}[/tex]
[tex] \\ [/tex]
Now, we have diameter of circular pound, D = 12 m.
So, Radius of circular pound, r = [tex]\tt \dfrac{D}{2}[/tex]
⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀= [tex]\tt \cancel{\dfrac{12 \: m}{2}}[/tex]
⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀= [tex]\tt 6 \: m[/tex]
[tex] \\ [/tex]
Now, by substituting value of π = 22/7 and r = 6 m, we have area of circle :
[tex] \tt : \implies Area = \dfrac{22}{7} \times (6 \: m)^{2}[/tex]
[tex] \tt : \implies Area = \dfrac{22}{7} \times 36 \: m^{2}[/tex]
[tex] \tt : \implies Area = \dfrac{792}{7} \: m^{2}[/tex]
[tex] \tt : \implies Area = 113.14 \: m^{2} \: (approx.)[/tex]
Hence, Area of the surface of circular pound is approximately 113.14 m².