Respuesta :

Given:

Consider the given statement is

[tex]\sqrt{\sec^2\theta+\text{cosec}^2\theta}=\tan \theta+\cot \theta[/tex]

To prove:

The given statement.

Solution:

We have,

[tex]\sqrt{\sec^2\theta+\text{cosec}^2\theta}=\tan \theta+\cot \theta[/tex]

Taking LHS, we get

[tex]LHS=\sqrt{\sec^2\theta+\text{cosec}^2\theta}[/tex]

[tex]LHS=\sqrt{\dfrac{1}{\cos^2\theta}+\dfrac{1}{\sin^2\theta}}[/tex]

[tex]LHS=\sqrt{\dfrac{\sin^2\theta+\cos^2\theta}{\sin^2\theta\cos^2\theta}}[/tex]

[tex]LHS=\sqrt{\dfrac{1}{\sin^2\theta\cos^2\theta}}[/tex]            [tex][\because \sin^2\theta+\cos^2\theta=1][/tex]

[tex]LHS=\dfrac{1}{\sin\theta\cos\theta}[/tex]

[tex]LHS=\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}[/tex]            [tex][\because \sin^2\theta+\cos^2\theta=1][/tex]

[tex]LHS=\dfrac{\sin^2\theta}{\sin\theta\cos\theta}+\dfrac{\cos^2\theta}{\sin\theta\cos\theta}[/tex]

[tex]LHS=\dfrac{\sin\theta}{\cos\theta}+\dfrac{\cos\theta}{\sin\theta}[/tex]

[tex]LHS=\tan \theta+\cot \theta[/tex]

[tex]LHS=RHS[/tex]

Hence proved.