Answer:
[tex]y = \frac{3}{2} x + 13[/tex]
Step-by-step explanation:
1) Use point-slope formula [tex]y-y_1 = m (x-x_1)[/tex] to find the slope-intercept form (or y = mx + b form) of the equation. m represents the slope, and [tex]x_1[/tex] and [tex]y_1[/tex] represent the x and y values of a point the line intersects. So, substitute [tex]\frac{3}{2}[/tex] for m, -4 for [tex]x_1[/tex], and 7 for [tex]y_1[/tex]. Then, simplify and isolate y on the left side like so:
[tex]y-(7) = \frac{3}{2} (x - (-4)) \\y -7 = \frac{3}{2} (x + 4) \\y - 7 = \frac{3}{2} x + 6\\y = \frac{3}{2} x + 13[/tex]