Respuesta :

Space

Answer:

(1, 2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

Algebra I

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define Systems

-4x + 9y = 14

12x - 10y = -8

Step 2: Rewrite Systems

-4x + 9y = 14

  1. Multiply everything by 3:                    -12x + 27y = 42

Step 3: Redefine Systems

-12x + 27y = 42

12x - 10y = -8

Step 4: Solve for y

Elimination

  1. Combine 2 equations:                    17y = 34
  2. Divide 26 on both sides:                y = 2

Step 5: Solve for x

  1. Define equation:                    12x - 10y = -8
  2. Substitute in y:                       12x - 10(2) = -8
  3. Multiply:                                  12x - 20 = -8
  4. Isolate x term:                        12x = 12
  5. Isolate x:                                 x = 1

Step-by-step explanation:

HERE,

two equation are,

●-4x+9y=14••••••••••••(equation I)

●12x-10y=-8•••••••••••(equation II)

First multiplying 3 in equation I

we get,

[tex]\bold{3×(-4x+9y=14) }[/tex]

=[tex]\bold{ -12x+27y=42 }[/tex]••(equation III)

Then,

we combine the equationii and equation III.

we get that,

[tex]\bold{12x-10y-12x+27y=-8+42 }[/tex]

[tex]\bold{\cancel{12x}-10y\cancel{-12x}+27y=-8+42 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{17y=34 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{ y=\dfrac{34}{17} }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\boxed{ y=2 }[/tex]

Then,

put the value of y in equation II.

WE get,

[tex]\rightsquigarrow[/tex] [tex]\bold{12x-10×2=-8 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{ 12x-20=-8 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{ 12x=-8+20 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{ 12x=12 }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\bold{ x=\dfrac{12}{12} }[/tex]

[tex]\rightsquigarrow[/tex] [tex]\boxed{ x=1 }[/tex]

So,

solution of the two equation (-4x+9y) and (12x-10y=-8) is (1,2)