Consider the following quadratic equation. f(x) = 9x^2
Part A: Write a function, g(x), the shifts f(x) down by 3 units.
Part B: Write a function, h(x), that vertically stretches f(x) by 6 units.
Part C: Write a function, m(x), that reflects f(x) about the x-axis.

Respuesta :

Answer:

  • [tex]g(x) = 9x^{2} -3[/tex]
  • [tex]h(x) = 54x^{2}[/tex]
  • [tex]m(x) = -9x^{2}[/tex]

Explanation:

[tex]f(x) = a(x-h)^{2} + k[/tex]

a:

  • Determines direction.
  • Negative x reflects over x-axis.
  • a < 1 --> vertically shrunk.
  • a > 1 --> vertically streched.

h:

  • Determines left and right.
  • Sign of h flips...
  • (x + h) goes left.
  • (x - h) goes right.

k:

  • Determines up and down.