Respuesta :

Answer:

[tex]g=0.0099\ m/s^2[/tex]

Explanation:

Given that,

Mass of the object, [tex]m=3\times 10^{23}\ kg[/tex]

Distance, [tex]r=4.5\times 10^7\ m[/tex]

We need to compute the value g from the center of the object to the distance r.

The formula to calculate g is given by :

[tex]g=\dfrac{GM}{r^2}[/tex]

G is Universal Gravitational Constant

Substitute all the values in the above formula.

[tex]g=\dfrac{6.67\times 10^{-11}\times 3\times 10^{23}}{(4.5\times 10^7)^2}\\\\=0.0099\ m/s^2[/tex]

So, the required value of g is [tex]0.0099\ m/s^2[/tex].

Answer:

0.0099 m/s/s or m/s^2

Explanation:

Work with the formula first and work out where each component is supposed to go.

      GM

G = --------

        r^2

Then you want to plug in:

(6.67 ⋅ 10^-11) (3.0 ⋅ 10^23 kg)

------------------------------------------

            (4.5 ⋅ 10^7)^2

The Solve to get an answer of:

0.0099 m/s/s