Answer:
[tex]x=-6,\\y=6[/tex]
Step-by-step explanation:
Rewrite the system of equations as:
[tex]\begin{cases}-13x+2y=90\\-6x+2y=48\end{cases}[/tex]
Subtract the second equation from the first to isolate [tex]x[/tex]:
[tex]-13x+2y-(-6x+2y)=42,\\-7x=42, \\\fbox{$x=-6$}[/tex]
Plug in [tex]x=-6[/tex] into any of the equations above and solve for [tex]y[/tex]:
[tex]-6(-6)+2y=48,\\2y=12,\\\fbox{$y=6$}[/tex]
Verify that the solution pair [tex](-6, 6)[/tex] works [tex]\checkmark[/tex]
Therefore, the solution to this system of equations is:
[tex]x=-6,\\y=6[/tex]