Respuesta :

Answer:

If [tex]f(x)=3(x+5)+\frac{4}{x}[/tex] we get [tex]\mathbf{f(a+2)=\frac{3a^2+27a+46}{a+2}}[/tex]

Step-by-step explanation:

We are given the function: [tex]f(x)=3(x+5)+\frac{4}{x}[/tex] we need to find the value of f(a+2)

For finding the value of f(a+2) we will put x= a+2

We have [tex]f(x)=3(x+5)+\frac{4}{x}[/tex]

Put x = a+2

[tex]f(a+2)=3(a+2+5)+\frac{4}{a+2}\\Solving:\\f(a+2)=3(a+7)+\frac{4}{a+2}\\Taking\:LCM\\f(a+2)=\frac{3(a+7)(a+2)+4}{a+2}\\f(a+2)=\frac{3(a^2+2a+7a+14)+4}{a+2}\\f(a+2)=\frac{3(a^2+9a+14)+4}{a+2}\\f(a+2)=\frac{3a^2+27a+42+4}{a+2}\\f(a+2)=\frac{3a^2+27a+46}{a+2}[/tex]

So, If [tex]f(x)=3(x+5)+\frac{4}{x}[/tex] we get [tex]\mathbf{f(a+2)=\frac{3a^2+27a+46}{a+2}}[/tex]

Answer:

If  we get

Step-by-step explanation: