Respuesta :

Answer:

Smallest surface area is of Cuboid B i.e 440 cm²

So, The company will choose cuboid B

Step-by-step explanation:

We need to find the surface area of all cuboids.

Surface Area of Cuboid A:

Length = 6

Breadth = 25

Height = 4

The formula used is: [tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)[/tex]

Putting values and finding surface area:

[tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)\\Surface \ Area \ of \ Cuboid=2((6 \times 25)+(25 \times 4)+(6 \times 4))\\Surface \ Area \ of \ Cuboid=2(150+100+24)\\Surface \ Area \ of \ Cuboid=2(274)\\Surface \ Area \ of \ Cuboid=548\: cm^2[/tex]

So, Surface Area of Cuboid A = 548 cm²

Surface Area of Cuboid B:

Length = 10

Breadth = 6

Height = 10

The formula used is: [tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)[/tex]

Putting values and finding surface area:

[tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)\\Surface \ Area \ of \ Cuboid=2(10 \times 6)+(6 \times 10)+(10 \times 10))\\Surface \ Area \ of \ Cuboid=2(60+60+100)\\Surface \ Area \ of \ Cuboid=2(220)\\Surface \ Area \ of \ Cuboid=440\: cm^2[/tex]

So, Surface Area of Cuboid B = 440 cm²

Surface Area of Cuboid C:

Length = 2

Breadth = 20

Height = 15

The formula used is: [tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)[/tex]

Putting values and finding surface area:

[tex]Surface \ Area \ of \ Cuboid=2((Length\times Breadth)(Breadth \times Height)+(Length \times Height)\\Surface \ Area \ of \ Cuboid=2((2 \times 20)+(20 \times 15)+(2 \times 15))\\Surface \ Area \ of \ Cuboid=2(40+300+30)\\Surface \ Area \ of \ Cuboid=2(370)\\Surface \ Area \ of \ Cuboid=740\: cm^2[/tex]

So, Surface Area of Cuboid C = 740 cm²

So, We get:

Surface Area of Cuboid A = 548 cm²

Surface Area of Cuboid B = 440 cm²

Surface Area of Cuboid C = 740 cm²

The company wants to choose the design having smallest surface area.

So, smallest surface area is of Cuboid B i.e 440 cm²

So, The company will choose cuboid B