Respuesta :

Answer:

[tex]\frac{3x^6}{6x^{-1}}= \frac{1}{2}x^7[/tex]

Step-by-step explanation:

Given

[tex]\frac{3x^6}{6x^{-1}}[/tex]

Required

Solve

In laws of indices, we have:

[tex]\frac{x^m}{x^n} = x^{m-n}[/tex]

So, the expression becomes:

[tex]\frac{3x^{6 - (-1)}}{6}[/tex]

[tex]\frac{3x^{6 +1}}{6}[/tex]

[tex]\frac{3x^7}{6}[/tex]

Divide 3 and 6 by 3

[tex]\frac{1x^7}{2}[/tex]

[tex]\frac{x^7}{2}[/tex]

This can be rewritten as:

[tex]\frac{1}{2}x^7[/tex]

Hence:

[tex]\frac{3x^6}{6x^{-1}}= \frac{1}{2}x^7[/tex]