Find the product or quotient using only positive exponents

Answer:
[tex]\frac{3x^6}{6x^{-1}}= \frac{1}{2}x^7[/tex]
Step-by-step explanation:
Given
[tex]\frac{3x^6}{6x^{-1}}[/tex]
Required
Solve
In laws of indices, we have:
[tex]\frac{x^m}{x^n} = x^{m-n}[/tex]
So, the expression becomes:
[tex]\frac{3x^{6 - (-1)}}{6}[/tex]
[tex]\frac{3x^{6 +1}}{6}[/tex]
[tex]\frac{3x^7}{6}[/tex]
Divide 3 and 6 by 3
[tex]\frac{1x^7}{2}[/tex]
[tex]\frac{x^7}{2}[/tex]
This can be rewritten as:
[tex]\frac{1}{2}x^7[/tex]
Hence:
[tex]\frac{3x^6}{6x^{-1}}= \frac{1}{2}x^7[/tex]