Tell one the lines for the given points are parallel, perpendicular, or neither. Just your answer.
Line 1: (2, -3), (-4, -6)
Line 2: (-3, 2), (2, -8)

Respuesta :

Answer:

Perpendicular

Step-by-step explanation:

Given

[tex]Line\ 1: (2, -3), (-4, -6)[/tex]

[tex]Line\ 2: (-3, 2), (2, -8)[/tex]

Required

Tell the relationship between both lines

We start by calculating the slopes (m) of both lines.

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

For Line 1:

[tex]m_1 = \frac{-6 - (-3)}{-4 - 2}[/tex]

[tex]m_1 = \frac{-6 +3}{-4 - 2}[/tex]

[tex]m_1 = \frac{-3}{-6}[/tex]

[tex]m_1 = \frac{1}{2}[/tex]

For Line 2:

[tex]m_2 = \frac{-8 - 2}{2 - (-3)}[/tex]

[tex]m_2 = \frac{-8 - 2}{2 +3}[/tex]

[tex]m_2 = \frac{-10}{5}[/tex]

[tex]m_2 = -2[/tex]

The lines are not parallel because [tex]m_1 \ne m_2[/tex]

However, they are perpendicular, because:

[tex]m_1 = -\frac{1}{m_2}[/tex]

To prove this, substitute values for m1 and m2

[tex]\frac{1}{2} = -\frac{1}{-2}[/tex]

[tex]\frac{1}{2} = \frac{1}{2}[/tex] --- Proved