Respuesta :

Answer:

3a² - 24ab + 48b² = 3 ( a - 4b )²

Step-by-step explanation:

We will start by rewriting the given quadratic polynomial,

3a² - 24ab + 48b²

Taking out the common "3",

=> 3 ( a² - 8ab + 16b² )

Splitting the middle term i.e. " - 8ab " appropriately,

=> 3 ( a² - 4ab - 4ab + 16b² )

=> 3 [ a ( a - 4b ) - 4b ( a + 4b ) ]

=> 3 ( a - 4b ) ( a - 4b )

Hence, option C is correct.

Answer:

[tex]\huge\boxed{\tt{ 3 (a-4b)(a-4b)}}[/tex]

Step-by-step explanation:

[tex]\sf 3a^2-24ab+48b^2\\\\Taking \ 3 \ as \ common\\\\= 3 (a^2-8ab+16b^2)\\\\= 3 [(a)^2 - 2 (a)(4) + (4b)^2]\\\\Using \ Formula \ a^2 - 2ab + b^2 = (a-b)^2\\\\= 3 (a-4b)^2\\\\= 3 (a-4b)(a-4b)\\\\\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807