Answer:
[tex] \boxed {( 4, - 10)}[/tex]
Step-by-step explanation:
[tex]y = {x}^{2} - 8x + 6[/tex]
Here are some formulas that you might need.
[tex]h = - \frac{b}{2a} \\ k = \frac{4ac - {b}^{2} }{4a} [/tex]
The vertex of graph is at (h, k) from the vertex form.
[tex]x = h \\ y = k[/tex]
Substitute in the formula.
[tex]h = - \frac{( - 8)}{2(1)} \\ h = \frac{8}{2} \\ h = 4[/tex]
Next we find the value of k.
[tex]k = \frac{4(1)(6) - {( - 8)}^{2} }{4(1)} \\ k = \frac{24 - 64}{4} \\ k = \frac{ - 40}{4} \\ k = - 10[/tex]
Therefore the vertex is (4,-10).