Rewrite this standard form quadratic equation into vertex form by completing the square. Upload your work here to show your thinking.




y=x2 - 6x +3

Respuesta :

Solution :

Given the equation :

[tex]$y = x^2 - 6x+3 $[/tex]

[tex]$y=1(x^2 - 6x +n)+3$[/tex]

[tex]$n = \left(\frac{b}{2}\right)^2$[/tex]

[tex]$n = \left(\frac{6}{2}\right)^2$[/tex]

n = 9

[tex]$y=1(x^2 - 6x +9-9)+3$[/tex]

[tex]$y=1(x^2 - 6x +9)-9+3$[/tex]

[tex]$y=1(x-3)^2- 6$[/tex]

Therefore the vertex form of [tex]$y = x^2 - 6x+3 $[/tex]  is  [tex]$y=1(x-3)^2- 6$[/tex].