Respuesta :

Answer:

The length of  [tex]\overline{AD}[/tex] is 20 inches

Step-by-step explanation:

The given parameters are;

Triangle ABC is similar to triangle DEC, therefore, we can write, ΔABC~ΔDEC

[tex]\overline{AC}[/tex] = 30 inches

[tex]\overline{BA}[/tex] = 18 inches

[tex]\overline{ED}[/tex] = 6 inches

By similar triangles formula, we have;

[tex]\overline{BA}[/tex]/[tex]\overline{ED}[/tex] = [tex]\overline{AC}[/tex]/[tex]\overline{DC}[/tex]

Substituting the known values gives;

18/6 = 30/[tex]\overline{DC}[/tex]

Therefore, [tex]\overline{DC}[/tex] = 30/(18/6) = 30/18 × 6 = 10

[tex]\overline{DC}[/tex] = 10

[tex]\overline{AD}[/tex] = [tex]\overline{AC}[/tex] - [tex]\overline{DC}[/tex] = 30 - 10 = 20

[tex]\overline{AD}[/tex] = 20 inches.