Given the general identity tan X =sin X/cos X , which equation relating the acute angles, A and C, of a right ∆ABC is true?

A. tan A = sin A/sin C
B. cos A = tan (90-A)/sin (90-C)
C. sin C = cos A/tan C
D. cos A = tan C
E. sin C = cos (90-C)/tan A

Respuesta :

The right anwer is option A.
tan A = sin A / sin C
sin C = sin A / tan A = sin A / (sin A / cos A) = cos A
sin C = cos A
frika

First, note that [tex]m\angle A+m\angle C=90^{\circ}.[/tex] Then

[tex]m\angle A=90^{\circ}-m\angle C \text{ and } m\angle C=90^{\circ}-m\angle A.[/tex]

Consider all options:

A.

[tex]\tan A=\dfrac{\sin A}{\sin C}[/tex]

By the definition,

[tex]\tan A=\dfrac{BC}{AB},\\ \\\sin A=\dfrac{BC}{AC},\\ \\\sin C=\dfrac{AB}{AC}.[/tex]

Now

[tex]\dfrac{\sin A}{\sin C}=\dfrac{\dfrac{BC}{AC}}{\dfrac{AB}{AC}}=\dfrac{BC}{AB}=\tan A.[/tex]

Option A is true.

B.

[tex]\cos A=\dfrac{\tan (90^{\circ}-A)}{\sin (90^{\circ}-C)}.[/tex]

By the definition,

[tex]\cos A=\dfrac{AB}{AC},\\ \\\tan (90^{\circ}-A)=\dfrac{\sin(90^{\circ}-A)}{\cos(90^{\circ}-A)}=\dfrac{\sin C}{\cos C}=\dfrac{\dfrac{AB}{AC}}{\dfrac{BC}{AC}}=\dfrac{AB}{BC},\\ \\\sin (90^{\circ}-C)=\sin A=\dfrac{BC}{AC}.[/tex]

Then

[tex]\dfrac{\tan (90^{\circ}-A)}{\sin (90^{\circ}-C)}=\dfrac{\dfrac{AB}{BC}}{\dfrac{BC}{AC}}=\dfrac{AB\cdot AC}{BC^2}\neq \dfrac{AB}{AC}.[/tex]

Option B is false.

3.

[tex]\sin C = \dfrac{\cos A}{\tan C}.[/tex]

By the definition,

[tex]\sin C=\dfrac{AB}{AC},\\ \\\cos A=\dfrac{AB}{AC},\\ \\\tan C=\dfrac{AB}{BC}.[/tex]

Now

[tex]\dfrac{\cos A}{\tan C}=\dfrac{\dfrac{AB}{AC}}{\dfrac{AB}{BC}}=\dfrac{BC}{AC}\neq \sin C.[/tex]

Option C is false.

D.

[tex]\cos A=\tan C.[/tex]

By the definition,

[tex]\cos A=\dfrac{AB}{AC},\\ \\\tan C=\dfrac{AB}{BC}.[/tex]

As you can see [tex]\cos A\neq \tan C[/tex] and option D is not true.

E.

[tex]\sin C = \dfrac{\cos(90^{\circ}-C)}{\tan A}.[/tex]

By the definition,

[tex]\sin C=\dfrac{AB}{AC},\\ \\\cos (90^{\circ}-C)=\cos A=\dfrac{AB}{AC},\\ \\\tan A=\dfrac{BC}{AB}.[/tex]

Then

[tex]\dfrac{\cos(90^{\circ}-C)}{\tan A}=\dfrac{\dfrac{AB}{AC}}{\dfrac{BC}{AB}}=\dfrac{AB^2}{AC\cdot BC}\neq \sin C.[/tex]

This option is false.