Consider the function f(x) = 6sin(x^2) on the interval 0 ≤ x ≤ 3.

(a) Find the exact value in the given interval where an antiderivative, F, reaches its maximum.
x =

(b) If F(1) = 5, estimate the maximum value attained by F. (Round your answer to three decimal places.)
y ≈

Respuesta :

a) F' = 6 sin(x^2) = 0
x^2 = pi
x = sqrt(pi)

b) Fmax = F(1) + integral [1, pi] f(x) dx = 9.7743

Solution:

The given function is

f(x)= 6 sin x²→→→0 ≤ x ≤ 3.

Differentiating once

f'(x)= 6 cos x²× 2 x=12 x cos x²

For Maximum or Minimum

f'(x)=0

12 x cos x²=0

cos x²=0 ∧ x=0

cos x²=cos [tex]\frac{\pi }{2}[/tex]

x²=  [tex]\frac{\pi}{2}[/tex]

x= [tex]\pm \sqrt\frac{\pi}{2}[/tex]

As, the interval given is,  0 ≤ x ≤ 3.

x=  [tex] \sqrt\frac{\pi}{2}[/tex]= [tex]\frac{22}{14}[/tex]

f"(x)=12 (-sin x²) × 2 x × x + 12 cos x²= 24 x². (-sin x²)+ 12 cos x²

At, x=  [tex] \sqrt\frac{\pi}{2}[/tex]= [tex]\frac{22}{14}[/tex]

f"(x)=-24 × [tex]\frac{\pi}{2}[/tex] ×1 + 0= A negative number

Showing the function attains maxima at this point.

f(0)=6 sin 0=0

f(3)= 6 sin 3²= 6 sin 9(radian)=6 × 0.40(approx)= 2.40

f( [tex] \sqrt\frac{\pi}{2}[/tex])=6 × sin([tex]\frac{\pi}{2}[/tex] )= 6 ×1=6→→Maximum Value

(b) f(1)=5

I.e at x=1, y=5

Maximum value attained by , f(x)=6 sin x² is 6 at , x=  [tex] \sqrt\frac{\pi}{2}[/tex].