Respuesta :
32t + 148 = 0148 = 32t4.625 = tt ≈ 4.63h = -16 • (4.625)^2 + 148 • 4.625 + 30 = 372.25
ANSWER: is D. 4.63 sec; 372.25 ft
2.) 2x - 4 = 0 and 2x - 1 = 0x = {4/2, ½}x = {2,½} ANSWER: is B 2, 1 over 2
ANSWER: is D. 4.63 sec; 372.25 ft
2.) 2x - 4 = 0 and 2x - 1 = 0x = {4/2, ½}x = {2,½} ANSWER: is B 2, 1 over 2
13. Answer: The height will be maximum 372.25 ft at 4.63 s.
Explanation:
Given that,
Upward velocity v = 148 ft/s
Function
[tex]h = -16t^2+148t+30[/tex].....(I)
On differentiate
[tex]\dfrac{dh}{dt}=-32t+148[/tex]....(II)
for maximum height,
[tex]\dfrac{dh}{dt}=0[/tex]
Put the value of [tex]\dfrac{dh}{dt}[/tex] in equation (II)
[tex]-32t+148=0[/tex]
[tex]t = \dfrac{148}{32}[/tex]
[tex]t = 4.63\ s[/tex]
The maximum height is
Put the value of t in equation(I)
[tex]h = -16\times(4.63)^2+148\times4.63+30[/tex]
[tex]h = 372.25 ft[/tex]
Hence, The height will be maximum 372.25 ft at 4.63 s.
16. Answer: The value of x is 2, [tex]\dfrac{1}{2}[/tex].
Explanation:
Given that,
[tex](2x-4)(2x-1)=0[/tex]
Using zero product property
[tex]2 x-4=0[/tex]
[tex]x = 2[/tex]
And,
[tex]2x-1=0[/tex]
[tex]x = \dfrac{1}{2}[/tex]
Hence, The value of x is 2, [tex]\dfrac{1}{2}[/tex].