Respuesta :

Answer:

sin 8x

Step-by-step explanation:

Answer:

[tex]\sin (8x)=\sin (9x) \cos (x) - \cos (9x)\sin (x)[/tex]

Step-by-step explanation:

Given : Expression [tex]\sin (9x) \cos (x) - \cos (9x)\sin (x)[/tex]

To write : The given expression as the sine, cosine, or tangent of an angle?

Solution :

The given expression is in the form [tex]\sin A\cos B-\cos A \sin B[/tex]

Using trigonometric identity,

[tex]\sin (A-B)=\sin A\cos B-\cos A \sin B[/tex]

Substituting, A=9x , B=x

[tex]\sin (9x-x)=\sin (9x) \cos (x) - \cos (9x)\sin (x)[/tex]

[tex]\sin (8x)=\sin (9x) \cos (x) - \cos (9x)\sin (x)[/tex]

Therefore, The given expression is in the sin form sin(8x).