Respuesta :

Answer:

15

Step-by-step explanation:

∆ABC ~ ∆AED, therefore,

[tex] \frac{AB}{AE} = \frac{BC}{ED} [/tex]

Let BE = x

AB = x + 9

AE = 9

BC = 16

ED = 6

Plug in the values into the equation

[tex] \frac{x + 9}{9} = \frac{16}{6} [/tex]

[tex] \frac{x + 9}{9} = \frac{8}{3} [/tex]

Cross multiply

[tex] (x + 9)(3) = (8)(9) [/tex]

[tex] 3x + 27 = 72 [/tex]

Subtract 27 from each side

[tex] 3x = 72 - 27 [/tex]

[tex] 3x = 45 [/tex]

Divide both sides by 3

[tex] x = \frac{45}{3} [/tex]

[tex] x = 15 [/tex]

Segment BE = x = 15