Respuesta :

Answer: Solving for f. Want to solve for x instead?

1 Remove parentheses.

f\times -2fx=3{x}^{2}-8x+7f×−2fx=3x

​2

​​ −8x+7

2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x

​a

​​ x

​b

​​ =x

​a+b

​​ .

-{f}^{2}\times 2x=3{x}^{2}-8x+7−f

​2

​​ ×2x=3x

​2

​​ −8x+7

3 Regroup terms.

-2{f}^{2}x=3{x}^{2}-8x+7−2f

​2

​​ x=3x

​2

​​ −8x+7

4 Divide both sides by -2−2.

{f}^{2}x=-\frac{3{x}^{2}-8x+7}{2}f

​2

​​ x=−

​2

​3x

​2

​​ −8x+7

​​

5 Divide both sides by xx.

{f}^{2}=-\frac{\frac{3{x}^{2}-8x+7}{2}}{x}f

​2

​​ =−

​x

​2

​3x

​2

​​ −8x+7

​​

​​

6 Simplify  \frac{\frac{3{x}^{2}-8x+7}{2}}{x}

​x

​2

​3x

​2

​​ −8x+7

​​

​​   to  \frac{3{x}^{2}-8x+7}{2x}

​2x

​3x

​2

​​ −8x+7

​​ .

{f}^{2}=-\frac{3{x}^{2}-8x+7}{2x}f

​2

​​ =−

​2x

​3x

​2

​​ −8x+7

​​

7 Take the square root of both sides.

f=\pm \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}f=±√

​−

​2x

​3x

​2

​​ −8x+7

​​

​​

8 Simplify  \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}√

​−

​2x

​3x

​2

​​ −8x+7

​​

​​   to  \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imath√

​2x

​3x

​2

​​ −8x+7

​​

​​ ı.

f=\pm \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imathf=±√

​2x

​3x

​2

​​ −8x+7

​​

​​ ı

9 Regroup terms.

f=\pm \imath \sqrt{\frac{3{x}^{2}-8x+7}{2x}}f=±ı√

​2x

​3x

​2

​​ −8x+7

​​

​​

Done- :)

f=±ı√ ​2x 3x 2 −8x+7

​​

​​

Step-by-step explanation