Respuesta :

Answer:

Part A)

[tex]f(1)=2, \; f^{-1}(1)=0, \; f^\prime(1)=1.4, \; (f^{-1})^\prime(1)=\frac{10}{7}[/tex]

Part B)

[tex]y=\frac{5}{14}x+\frac{4}{7}[/tex]

Step-by-step explanation:

Please refer to the table of values.

Part A)

A. 1)

We want to find f(1).

According to the table, when x=1, f(x)=2.

Hence, f(1)=2.

A. 2)

We want to find f⁻¹(1).

Notice that when x=0, f(x)=1.

So, f(0)=1.

Then by definition of inverses, f⁻¹(1)=0.

A. 3)

We want to find f’(1).

According to the table, when x=1, f’(x)=1.4.

Hence, f’(1)=1.4.

A. 4)

We will need to do some calculus.

Let g(x) equal to f⁻¹(x). Then by the definition of inverses:

[tex]f(g(x))=x[/tex]

Take the derivative of both sides with respect to x. On the left, this will require the chain rule. Therefore:

[tex]f^\prime(g(x))\cdot g^\prime(x)=1[/tex]

Solve for g’(x):

[tex]g^\prime(x)=\frac{1}{f^\prime(g(x))}[/tex]

Substituting back f⁻¹(x) for g(x) yields:

[tex](f^{-1})^\prime(x)=\frac{1}{f^\prime({f^{-1}(x)})}[/tex]

Therefore:

[tex](f^{-1})^\prime(1)=\frac{1}{f^\prime({f^{-1}(1)})}[/tex]

We already determined previously that f⁻¹(1) is 0. Therefore:

[tex](f^{-1})^\prime(1)=\frac{1}{f^\prime(0)}[/tex]

According to the table, f’(0) is 0.7. So:

[tex](f^{-1})^\prime(1)=\frac{1}{0.7}=\frac{10}{7}[/tex]

Hence, (f⁻¹)’(1)=10/7.

Part B)

We want to find the equation of the tangent line of y=f⁻¹(x) at x=4.

First, let’s determine the points. Since f(2)=4, this means that f⁻¹(4)=2.

Hence, our point is (4, 2).

We will now need to find our slope. This will be the derivative at x=4. Therefore:

[tex](f^{-1})^\prime(4)=\frac{1}{f^\prime({f^{-1}(4)})}[/tex]

We know that f⁻¹(4)=2. So:

[tex](f^{-1})^\prime(4)=\frac{1}{f^\prime(2)}[/tex]

Evaluate:

[tex](f^{-1})^\prime(4)=\frac{1}{f^\prime(2)}=\frac{1}{2.8}=\frac{10}{28}=\frac{5}{14}[/tex]

Now, we can use the point slope form. Our point is (4, 2) and our slope at that point is 5/14.

So:

[tex]y-2=\frac{5}{14}(x-4)[/tex]

Solve for y:

[tex]y-2=\frac{5}{14}x-\frac{20}{14}[/tex]

Adding 2 to both sides yields:

[tex]y=\frac{5}{14}x-\frac{20}{14}+\frac{28}{14}[/tex]

Hence, our equation is:

[tex]y=\frac{5}{14}x+\frac{4}{7}[/tex]