Quiz 3-3 Parallel and Perpendicular Lines on the Coordinate Plane (Gina Wilson All Things Algebra 2014-2019) need these for a quiz please!


Answer:
14. [tex]y = -2x -1[/tex]
15. [tex]y = -\frac{3}{4}x +3[/tex]
16. [tex]y= 4x + 9[/tex]
17. [tex]y = -\frac{5}{3}x -2[/tex]
18. [tex]y= -\frac{2}{3}x -5[/tex]
19. [tex]y = 4x -3[/tex]
20. [tex]y = -3x -7[/tex]
Step-by-step explanation:
Solving (14):
Given
[tex](x_1,y_1) = (-7,13)[/tex]
[tex]Slope (m) = -2[/tex]
Equation in [tex]slope- intercept[/tex] form is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1
[tex]y - 13 = -2(x -(-7))[/tex]
[tex]y - 13 = -2(x +7)[/tex]
[tex]y - 13 = -2x -14[/tex]
Collect Like Terms
[tex]y = -2x -14 + 13[/tex]
[tex]y = -2x -1[/tex]
Solving (15):
Given
[tex](x_1,y_1) = (-4,6)[/tex]
[tex]Slope (m) = -\frac{3}{4}[/tex]
Equation in [tex]slope- intercept[/tex] form is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1
[tex]y - 6 = -\frac{3}{4}(x - (-4))[/tex]
[tex]y - 6 = -\frac{3}{4}(x +4)[/tex]
[tex]y - 6 = -\frac{3}{4}x -3[/tex]
Collect Like Terms
[tex]y = -\frac{3}{4}x -3 + 6[/tex]
[tex]y = -\frac{3}{4}x +3[/tex]
Solving (16):
Given
[tex](x_1,y_1) = (-5,-11)[/tex]
[tex](x_2,y_2) = (-2,1)[/tex]
First, we need to calculate the [tex]slope\ (m)[/tex]
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{1 - (-11)}{-2 - (-5)}[/tex]
[tex]m = \frac{1 +11}{-2 +5}[/tex]
[tex]m = \frac{12}{3}[/tex]
[tex]m = 4[/tex]
Equation in [tex]slope- intercept[/tex] form is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1
[tex]y - (-11) = 4(x -(-5))[/tex]
[tex]y +11 = 4(x+5)[/tex]
[tex]y +11 = 4x+20[/tex]
Collect Like Terms
[tex]y= 4x + 20 - 11[/tex]
[tex]y= 4x + 9[/tex]
Solving (17):
Given
[tex](x_1,y_1) = (-6,8)[/tex]
[tex](x_2,y_2) = (3,-7)[/tex]
First, we need to calculate the [tex]slope\ (m)[/tex]
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{-7 - 8}{3- (-6)}[/tex]
[tex]m = \frac{-7 - 8}{3+6}[/tex]
[tex]m = \frac{-15}{9}[/tex]
[tex]m = -\frac{5}{3}[/tex]
Equation in [tex]slope- intercept[/tex] form is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1
[tex]y - 8 = -\frac{5}{3}(x -(-6))[/tex]
[tex]y - 8 = -\frac{5}{3}(x +6)[/tex]
[tex]y - 8 = -\frac{5}{3}x -10[/tex]
Collect Like Terms
[tex]y = -\frac{5}{3}x -10 + 8[/tex]
[tex]y = -\frac{5}{3}x -2[/tex]
18.
Given
[tex](x_1,y_1) = (-6,-1)[/tex]
[tex]y = -\frac{2}{3}x+1[/tex]
Since the given point is parallel to the line equation, then the slope of the point is calculated as:
[tex]m_1 = m_2[/tex]
Where [tex]m_2[/tex] represents the slope
Going by the format of an equation, [tex]y = mx + b[/tex]; by comparison
[tex]m = -\frac{2}{3}[/tex]
and
[tex]m_1 = m_2 = -\frac{2}{3}[/tex]
Equation in [tex]slope\ intercept\ form[/tex] is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1
[tex]y - (-1) = -\frac{2}{3}(x - (-6))[/tex]
[tex]y +1 = -\frac{2}{3}(x +6)[/tex]
[tex]y +1 = -\frac{2}{3}x -4[/tex]
[tex]y= -\frac{2}{3}x -4 - 1[/tex]
[tex]y= -\frac{2}{3}x -5[/tex]
19.
Given
[tex](x_1,y_1) = (-2,-11)[/tex]
[tex]y = -\frac{1}{4}x+2[/tex]
Since the given point is parallel to the line equation, then the slope of the point is calculated as:
[tex]m_1 = -\frac{1}{m_2}[/tex]
Where [tex]m_2[/tex] represents the slope
Going by the format of an equation, [tex]y = mx + b[/tex]; by comparison
[tex]m_2 = -\frac{1}{4}[/tex]
and
[tex]m_1 = -\frac{1}{m_2}[/tex]
[tex]m_1 = -1/\frac{-1}{4}[/tex]
[tex]m_1 = -1*\frac{-4}{1}[/tex]
[tex]m_1 = 4[/tex]
Equation in [tex]slope\ intercept\ form[/tex] is:
[tex]y - y_1 = m(x-x_1)[/tex]
[tex](x_1,y_1) = (-2,-11)[/tex]
Substitute values for y1, m and x1
[tex]y - (-11) = 4(x - (-2))[/tex]
[tex]y +11 = 4(x +2)[/tex]
[tex]y +11 = 4x +8[/tex]
Collect Like Terms
[tex]y = 4x + 8 - 11[/tex]
[tex]y = 4x -3[/tex]
20.
Given
[tex](x_1,y_1) = (-10,3)[/tex]
[tex](x_2,y_2) = (2,7)[/tex]
First, we need to calculate the slope of the given points
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{7 - 3}{2 - (-10)}[/tex]
[tex]m = \frac{7 - 3}{2 +10}[/tex]
[tex]m = \frac{4}{12}[/tex]
[tex]m = \frac{1}{3}[/tex]
Next, we determine the slope of the perpendicular bisector using:
[tex]m_1 = -\frac{1}{m_2}[/tex]
[tex]m_1 = -1/\frac{1}{3}[/tex]
[tex]m_1 = -3[/tex]
Next, is to determine the coordinates of the bisector.
To bisect means to divide into equal parts.
So the coordinates of the bisector is the midpoint of the given points;
[tex]Midpoint = [\frac{1}{2}(x_1+x_2),\frac{1}{2}(y_1+y_2)][/tex]
[tex]Midpoint = [\frac{1}{2}(-10+2),\frac{1}{2}(3+7)][/tex]
[tex]Midpoint = [\frac{1}{2}(-8),\frac{1}{2}(10)][/tex]
[tex]Midpoint = (-4,5)[/tex]
So, the coordinates of the midpoint is:
[tex](x_1,y_1) = (-4,5)[/tex]
Equation in [tex]slope- intercept[/tex] form is:
[tex]y - y_1 = m(x-x_1)[/tex]
Substitute values for y1, m and x1: [tex]m_1 = -3[/tex] & [tex](x_1,y_1) = (-4,5)[/tex]
[tex]y - 5 = -3(x - (-4))[/tex]
[tex]y - 5 = -3(x +4)[/tex]
[tex]y - 5 = -3x-12[/tex]
Collect Like Terms
[tex]y = -3x - 12 +5[/tex]
[tex]y = -3x -7[/tex]