Respuesta :

zdhe

Answer:

[tex]n=\frac{386x-75}{5}[/tex]

Step-by-step explanation:

Add like terms

[tex]-35x+3\cdot \frac{3}{5}x-22\cdot \:2x-15=n[/tex]

Add 15 on both sides

[tex]-35x+\frac{9}{5}x-44x-15+15=n+15[/tex]

Simplify

[tex]-35x+\frac{9}{5}x-44x=n+15[/tex]

Multiply sides by 5

[tex]-35x\cdot \:5+\frac{9}{5}x\cdot \:5-44x\cdot \:5=n\cdot \:5+15\cdot \:5[/tex]

Simplify

[tex]-386x=5n+75[/tex]

Divide both sides

[tex]\frac{-386x}{-386}=\frac{5n}{-386}+\frac{75}{-386}[/tex]

You will get

[tex]x=-\frac{5n+75}{386}[/tex]

Then you will solve for n using x

Multiply both sides by 386

[tex]\frac{386\left(5n+75\right)}{386}=386x[/tex]

Simplify

[tex]5n+75=386x[/tex]

Subtraction

[tex]5n+75-75=386x-75[/tex]

Simplify

[tex]5n=386x-75[/tex]

Divide by 5 to get n

[tex]\frac{5n}{5}=\frac{386x}{5}-\frac{75}{5}[/tex]

[tex]n=\frac{386x-75}{5}[/tex]