Answer:
[tex]n=\frac{386x-75}{5}[/tex]
Step-by-step explanation:
Add like terms
[tex]-35x+3\cdot \frac{3}{5}x-22\cdot \:2x-15=n[/tex]
Add 15 on both sides
[tex]-35x+\frac{9}{5}x-44x-15+15=n+15[/tex]
Simplify
[tex]-35x+\frac{9}{5}x-44x=n+15[/tex]
Multiply sides by 5
[tex]-35x\cdot \:5+\frac{9}{5}x\cdot \:5-44x\cdot \:5=n\cdot \:5+15\cdot \:5[/tex]
Simplify
[tex]-386x=5n+75[/tex]
Divide both sides
[tex]\frac{-386x}{-386}=\frac{5n}{-386}+\frac{75}{-386}[/tex]
You will get
[tex]x=-\frac{5n+75}{386}[/tex]
Then you will solve for n using x
Multiply both sides by 386
[tex]\frac{386\left(5n+75\right)}{386}=386x[/tex]
Simplify
[tex]5n+75=386x[/tex]
Subtraction
[tex]5n+75-75=386x-75[/tex]
Simplify
[tex]5n=386x-75[/tex]
Divide by 5 to get n
[tex]\frac{5n}{5}=\frac{386x}{5}-\frac{75}{5}[/tex]
[tex]n=\frac{386x-75}{5}[/tex]