Respuesta :

Answer:

[tex][f(x)]^2-g(x) = 5x^2-13x-8[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 2x-2\\g(x) = -x^2+5x+12[/tex]

To find: [tex][f(x)]^2-g(x)[/tex]

First of all the square of first function f(x) will be found and then second function g(x) will be subtracted from the square of first function

Squaring the first function

[tex][f(x)]^2 = (2x-2)^2\\Using\ (a-b)^2 = a^2-2ab+b^2\\\[f(x)]^2 = (2x)^2-2(2x)(2)+(2)^2\\= 4x^2-8x+4[/tex]

Now subtracting g(x) from [f(x)]^2

[tex][f(x)]^2-g(x) = (4x^2-8x+4)-(-x^2+5x+12)\\\[f(x)]^2-g(x) = 4x^2-8x+4+x^2-5x-12[/tex]

Combining alike terms

[tex][f(x)]^2-g(x) = 4x^2+x^2-5x-8x+4-12\\\[f(x)]^2-g(x) = 5x^2-13x-8[/tex]

Hence,

Subtracting g(x) from the square of f(x) gives us:

[tex][f(x)]^2-g(x) = 5x^2-13x-8[/tex]