Answer:
[tex]A' = (- 1, -8)[/tex]
[tex]B' = (-8, -8)[/tex]
[tex]C' = (-5, -1)[/tex]
Step-by-step explanation:
Given
[tex]A = (- 1, 8)[/tex]
[tex]B = (-8, 8)[/tex]
[tex]C = (-5, 1)[/tex]
Required
Determine the reflected image in the x axis
When a point is reflected across the x axis, the x coordinate remains the same, while the y coordinate is negated.
In other words,
[tex]A(x,y)[/tex] when reflected becomes [tex]A'(x,-y)[/tex]
So, for each of the following points
[tex]A = (- 1, 8)[/tex]
[tex]B = (-8, 8)[/tex]
[tex]C = (-5, 1)[/tex]
There images are:
[tex]A' = (- 1, -8)[/tex]
[tex]B' = (-8, -8)[/tex]
[tex]C' = (-5, -1)[/tex]