Respuesta :

Answer:

[tex]B = 108[/tex]

[tex]C = 36[/tex]

[tex]D = 36[/tex]

Step-by-step explanation:

Given

[tex]B =13x - 35[/tex]

[tex]C = 5x - 19[/tex]

[tex]D=2x+14[/tex]

[tex]BC = BD[/tex]

Required

Determine the measure of each angle

The angles in a triangle sum up t 180. i.e.

[tex]B + C + D = 180[/tex]

Since [tex]BC = BD[/tex], then [tex]C = D[/tex]

[tex]B + C + D = 180[/tex] can then be rewritten as:

[tex]B + C + C = 180[/tex]

[tex]B + 2C = 180[/tex]

Substitute values for B and C

[tex]13x - 35 + 2(5x - 19) = 180[/tex]

Open Bracket

[tex]13x - 35 + 10x - 38 = 180[/tex]

Collect Like Terms

[tex]13x + 10x = 180 + 38 + 35[/tex]

[tex]23x= 253[/tex]

Divide both sides by 23

[tex]x = 11[/tex]

To get the measure of each angle, substitute 11 for x in the expressions of B, C and D

[tex]B =13x - 35[/tex]

[tex]B = 13 * 11 - 35[/tex]

[tex]B = 108[/tex]

[tex]C = 5x - 19[/tex]

[tex]C = 5 * 11 - 19[/tex]

[tex]C = 36[/tex]

[tex]D=2x+14[/tex]

[tex]D = 2 * 11 + 14[/tex]

[tex]D = 36[/tex]

The measure of m<B, m<C and m<D are 108, 36 and 46 respectively

What are triangles?

From the triangle BCD, if BC=BD, then

m<C = m<D (Base angles are equal)

Given the following paramters:

  • m<C = 5x-19
  • m<D = 2x + 14

Hence;

5x - 19 =2x + 14

5x- 2x = 14 + 19

3x = 33

x = 11

m<B = 13x - 35

m<B = 13(11) - 35

m<B = 108 degres

m<C = 5x - 19

m<C = 55- 19

m<C = 36

m<D = 180 - 144

m<D = 36 degreees

Hence the measure of m<B, m<C and m<D are 108, 36 and 46 respectively

learn more on angles here: https://brainly.com/question/16281260