Respuesta :
Answer:
[tex]B = 108[/tex]
[tex]C = 36[/tex]
[tex]D = 36[/tex]
Step-by-step explanation:
Given
[tex]B =13x - 35[/tex]
[tex]C = 5x - 19[/tex]
[tex]D=2x+14[/tex]
[tex]BC = BD[/tex]
Required
Determine the measure of each angle
The angles in a triangle sum up t 180. i.e.
[tex]B + C + D = 180[/tex]
Since [tex]BC = BD[/tex], then [tex]C = D[/tex]
[tex]B + C + D = 180[/tex] can then be rewritten as:
[tex]B + C + C = 180[/tex]
[tex]B + 2C = 180[/tex]
Substitute values for B and C
[tex]13x - 35 + 2(5x - 19) = 180[/tex]
Open Bracket
[tex]13x - 35 + 10x - 38 = 180[/tex]
Collect Like Terms
[tex]13x + 10x = 180 + 38 + 35[/tex]
[tex]23x= 253[/tex]
Divide both sides by 23
[tex]x = 11[/tex]
To get the measure of each angle, substitute 11 for x in the expressions of B, C and D
[tex]B =13x - 35[/tex]
[tex]B = 13 * 11 - 35[/tex]
[tex]B = 108[/tex]
[tex]C = 5x - 19[/tex]
[tex]C = 5 * 11 - 19[/tex]
[tex]C = 36[/tex]
[tex]D=2x+14[/tex]
[tex]D = 2 * 11 + 14[/tex]
[tex]D = 36[/tex]
The measure of m<B, m<C and m<D are 108, 36 and 46 respectively
What are triangles?
From the triangle BCD, if BC=BD, then
m<C = m<D (Base angles are equal)
Given the following paramters:
- m<C = 5x-19
- m<D = 2x + 14
Hence;
5x - 19 =2x + 14
5x- 2x = 14 + 19
3x = 33
x = 11
m<B = 13x - 35
m<B = 13(11) - 35
m<B = 108 degres
m<C = 5x - 19
m<C = 55- 19
m<C = 36
m<D = 180 - 144
m<D = 36 degreees
Hence the measure of m<B, m<C and m<D are 108, 36 and 46 respectively
learn more on angles here: https://brainly.com/question/16281260