Answer:
The volume of the cylinder is 900 cubic inches
Step-by-step explanation:
Given
Let V1 represent the volume of a cone and V2 represents the volume of a cylinder
[tex]V_1 = 300in^3[/tex]
Required
Determine the volume of a cylinder with same dimension
The volume of a cone is calculated as:
[tex]V_1 = \frac{1}{3}\pi r^2h[/tex]
The volume of a cylinder is calculated as:
[tex]V_2 = \pi r^2h[/tex]
Since, the cone and cylinder have the same dimensions, we can substitute [tex]\pi r^2h[/tex] for [tex]V_2[/tex] in [tex]V_1 = \frac{1}{3}\pi r^2h[/tex]
So, we have:
[tex]V_1 = \frac{1}{3} * V_2[/tex]
Multiply both sides by 3
[tex]3 * V_1 = \frac{1}{3} * V_2 * 3[/tex]
[tex]3 * V_1 = V_2[/tex]
[tex]V_2 = 3 * V_1[/tex]
Substitute [tex]300in^3[/tex] for [tex]V_1[/tex]
[tex]V_2 = 3 * 300in^3[/tex]
[tex]V_2 = 900in^3[/tex]
Hence, the volume of the cylinder is 900 cubic inches