Answer:
[tex]\boxed {d = 15}[/tex]
Step-by-step explanation:
Use the Distance Formula to help determine the distance between two given points:
[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
First point: [tex](x_{1}, y_{1})[/tex]
Second point: [tex](x_{2}, y_{2})[/tex]
-Substitute both given points:
[tex](x_{1}, y_{1}) = (6, 4)[/tex]
[tex](x_{2}, y_{2}) = (-6, -5)[/tex]
[tex]d = \sqrt{(-6 - 6)^{2} + (-5 - 4)^{2}}[/tex]
-Solve for the distance:
[tex]d = \sqrt{(-6 - 6)^{2} + (-5 - 4)^{2}}[/tex]
[tex]d = \sqrt{(-12)^{2} + (-9)^{2}}[/tex]
[tex]d = \sqrt{144 + 81}[/tex]
[tex]d = \sqrt{225}[/tex]
[tex]\boxed {d = 15}[/tex]
Therefore, the distance is [tex]15[/tex].