Respuesta :

Answer:

[tex]\boxed {d = 15}[/tex]

Step-by-step explanation:

Use the Distance Formula to help determine the distance between two given points:

[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]

First point: [tex](x_{1}, y_{1})[/tex]

Second point: [tex](x_{2}, y_{2})[/tex]

-Substitute both given points:

[tex](x_{1}, y_{1}) = (6, 4)[/tex]

[tex](x_{2}, y_{2}) = (-6, -5)[/tex]

[tex]d = \sqrt{(-6 - 6)^{2} + (-5 - 4)^{2}}[/tex]

-Solve for the distance:

[tex]d = \sqrt{(-6 - 6)^{2} + (-5 - 4)^{2}}[/tex]

[tex]d = \sqrt{(-12)^{2} + (-9)^{2}}[/tex]

[tex]d = \sqrt{144 + 81}[/tex]

[tex]d = \sqrt{225}[/tex]

[tex]\boxed {d = 15}[/tex]

Therefore, the distance is [tex]15[/tex].