Respuesta :

Answer:

[tex]y=-\frac{1}{2} x+2[/tex]

Step-by-step explanation:

The given equation is written in slope-intercept form:

[tex]y=mx+b[/tex]

where:

  • m is the slope
  • b is the y-intercept
  • x and y are the corresponding coordinate points (x,y)

The slope is 2:

When two lines are perpendicular, their slopes will be opposite reciprocals. Find the slope of the line perpendicular to the given equation:

[tex]m_{1}=2[/tex]

This can be seen as:

[tex]m_{1}=\frac{2}{1}[/tex]

Flip the fraction (reciprocal):

[tex]\frac{2}{1}[/tex] → [tex]\frac{1}{2}[/tex]

Now find the opposite:

[tex]\frac{1}{2}[/tex] → [tex]-\frac{1}{2}[/tex]

So the slope of the perpendicular line is:

[tex]m_{2}=-\frac{1}{2}[/tex]

Now make an equation written in point-slope form:

[tex]y-y_{1}=m(x-x_{1})[/tex]

where:

  • m is the slope
  • [tex]x_{1}[/tex] and [tex]y_{1}[/tex] are the corresponding coordinate points [tex](x_{1},y_{1})[/tex]

Insert information:

[tex]y-3=-\frac{1}{2} (x-(-2))\\\\y-3=-\frac{1}{2} (x+2)[/tex]

Simplify to slope-intercept form. Solve for y:

Use the distributive property:

[tex]y-3=-\frac{1}{2}(x)-\frac{1}{2} (2)\\\\ y-3=-\frac{1}{2} x-1[/tex]

Add 3 to both sides to isolate the variable:

[tex]y-3+3=-\frac{1}{2} x-1+3\\\\y=-\frac{1}{2} x+2[/tex]

:Done