Respuesta :
Answer:
[tex]y=-\frac{1}{2} x+2[/tex]
Step-by-step explanation:
The given equation is written in slope-intercept form:
[tex]y=mx+b[/tex]
where:
- m is the slope
- b is the y-intercept
- x and y are the corresponding coordinate points (x,y)
The slope is 2:
When two lines are perpendicular, their slopes will be opposite reciprocals. Find the slope of the line perpendicular to the given equation:
[tex]m_{1}=2[/tex]
This can be seen as:
[tex]m_{1}=\frac{2}{1}[/tex]
Flip the fraction (reciprocal):
[tex]\frac{2}{1}[/tex] → [tex]\frac{1}{2}[/tex]
Now find the opposite:
[tex]\frac{1}{2}[/tex] → [tex]-\frac{1}{2}[/tex]
So the slope of the perpendicular line is:
[tex]m_{2}=-\frac{1}{2}[/tex]
Now make an equation written in point-slope form:
[tex]y-y_{1}=m(x-x_{1})[/tex]
where:
- m is the slope
- [tex]x_{1}[/tex] and [tex]y_{1}[/tex] are the corresponding coordinate points [tex](x_{1},y_{1})[/tex]
Insert information:
[tex]y-3=-\frac{1}{2} (x-(-2))\\\\y-3=-\frac{1}{2} (x+2)[/tex]
Simplify to slope-intercept form. Solve for y:
Use the distributive property:
[tex]y-3=-\frac{1}{2}(x)-\frac{1}{2} (2)\\\\ y-3=-\frac{1}{2} x-1[/tex]
Add 3 to both sides to isolate the variable:
[tex]y-3+3=-\frac{1}{2} x-1+3\\\\y=-\frac{1}{2} x+2[/tex]
:Done