Answer:
m = 139167 / 329 = 423 / 1 = 423
Step-by-step explanation:
\displaystyle\int_{-\infty}^\infty e^{-x^2}dx = \sqrt{\pi}
\displaystyle \sum_{n} \frac{1}{n^s} = \prod_{p} {\frac{1}{1 - \frac{1}{p^s}}}
\displaystyle n! = \int_{0}^{\infty} {x^n e^{-x} \,dx}
F(n) = \frac{(\varphi)^n - (-\frac{1}{\varphi})^n}{\sqrt{5}}
Super Glad I Could Help Today!
Brainliest?
Have A Wonderful Day!