Answer:
Explanation:
[tex]n=f(t)= \frac{a}{(1+be^{-.9t})}[/tex]
At t = 0
30 = [tex]\frac{a}{1 + b }[/tex]
30 + 30 b = a
[tex]\frac{dn}{dt} =f(t)= \frac{-.9abe^{-.9t}}{(1+be^{-.9t})^2}[/tex]
For t = o
[tex]\frac{dn}{dt} =f(t)= \frac{.9ab}{(1+b)^2}[/tex]
given
24 = [tex]\frac{.9ab}{(1+b)^2}[/tex]
24 = [tex]\frac{30\times.9b }{1+b}[/tex]
24 = 27b / 1 + b
24 + 24 b = 27 b
24 = 3 b
b = 8
a = 30 + 30 x 8 = 270
[tex]n=f(t)= \frac{a}{(1+be^{-.9t})}[/tex]
Put t = infinity
n = a = 270
So at infinite time yeast population will stabilise at number 270 .