A scientist claims that 7% 7 % of viruses are airborne. If the scientist is accurate, what is the probability that the proportion of airborne viruses in a sample of 600 600 viruses would differ from the population proportion by greater than 3% 3 % ? Round your answer to four decimal places.

Respuesta :

Answer:

The probability is [tex]P(|p-\^{p}| >  0.03)  =   0.0040[/tex]

Step-by-step explanation:

From the question we are told that

   The population proportion is [tex]p =  0.07[/tex]

   The mean of the sampling distribution is   [tex]\mu_p =  0.07[/tex]

   The sample size is n = 600

Generally the standard deviation is mathematically represented as

     [tex]\sigma_p  =  \sqrt{\frac{p (1 -p)}{n} }[/tex]

=>    [tex]\sigma_p  =  \sqrt{\frac{0.07(1 -0.07)}{600} }[/tex]    

=>    [tex]\sigma_p  =  0.010416 [/tex]    

Generally the probability that the proportion of airborne viruses in a sample of 600 viruses would differ from the population proportion by greater than 3% is mathematically represented as

      [tex]P(|p-\^{p}| >  0.03) =  1 - P(|p -\^{p}| \le 0.03)[/tex]

=>   [tex]P(|p-\^{p}| >  0.03)  =  1 -  P(-0.03 \le p -\^{p} \le 0.03 )[/tex]

Now  add p  to  both side of the inequality

=>   [tex]P(|p-\^{p}| >  0.03)  =  1 -  P( 0.07-0.03  \le \^{p} \le 0.03+ 0.07 )[/tex]

=>   [tex]P(|p-\^{p}| >  0.03)  =  1 -  P(0.04 \le \^{p} \le 0.10 )[/tex]

Now  converting the probabilities to their respective standardized score

=> [tex]P(|p-\^{p}| >  0.03)  =  1 -  P(\frac{0.04 - 0.07}{0.010416}  \le Z \le \frac{0.10 -0.07}{0.010416}  )[/tex]

=> [tex]P(|p-\^{p}| >  0.03)  =  1 -  P(-2.88  \le Z \le 2.88 )[/tex]

=>   [tex]P(|p-\^{p}| >  0.03)  =   1 - [P(Z \le 2.88) - P(Z \le -2.88)][/tex]

From the z-table  

       [tex]P(Z \le 2.88)  =  0.9980[/tex]

and

       [tex]P(Z \le -2.88)  = 0.0020[/tex]

So

     [tex]P(|p-\^{p}| >  0.03)  =   1 - [0.9980 - 0.0020][/tex]

=>   [tex]P(|p-\^{p}| >  0.03)  =   0.0040[/tex]