Given:
The equation is
[tex]4(2x-3)-(mx+5)=5x+b[/tex]
To find:
The values of m and b.
Solution:
We have,
[tex]4(2x-3)-(mx+5)=5x+b[/tex]
Using distributive property, we get
[tex]8x-12-mx-5=5x+b[/tex]
On combining like terms, we get
[tex](8-m)x+(-12-5)=5x+b[/tex]
[tex](8-m)x-17=5x+b[/tex]
On comparing both sides, we get
[tex](8-m)=5[/tex]
[tex]-m=5-8[/tex]
[tex]-m=-3[/tex]
[tex]m=3[/tex]
And,
[tex]b=-17[/tex]
Therefore, m = 3 and b = 17.
Note: All options are incorrect.