Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identity

tan²x + 1 = sec²x

Consider the left side

[tex]\frac{1+sin^4A}{cos^4A}[/tex]

= [tex]\frac{1}{cos^4A}[/tex] + [tex]\frac{sin^4A}{cos^4A}[/tex]

= [tex]sec^{4}[/tex] A + [tex]tan^{4}[/tex] A

= (tan²A + 1)² + [tex]tan^{4}[/tex] A

= [tex]tan^{4}[/tex] A + 2tan²A + 1 + [tex]tan^{4}[/tex] A

= 1 + 2tan²A + 2[tex]tan^{4}[/tex] A ← factor out 2tan²A

= 1 + 2tan²A(1 + tan²A)

= 1 + 2tan²A sec²A

= right side , thus verified