Answer:
4[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplify the radicals
[tex]\sqrt{27}[/tex] = [tex]\sqrt{9(3)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{3}[/tex] = 3[tex]\sqrt{3}[/tex]
[tex]\sqrt{48}[/tex] = [tex]\sqrt{16(3)}[/tex] = [tex]\sqrt{16}[/tex] × [tex]\sqrt{3}[/tex] = 4[tex]\sqrt{3}[/tex]
[tex]\sqrt{75}[/tex] = [tex]\sqrt{25(3)}[/tex] = [tex]\sqrt{25}[/tex] × [tex]\sqrt{3}[/tex] = 5[tex]\sqrt{3}[/tex]
Now mean is calculated as
mean = [tex]\frac{sum}{count}[/tex] , then
mean = [tex]\frac{3\sqrt{3}+4\sqrt{3}+5\sqrt{3} }{3}[/tex] = [tex]\frac{12\sqrt{3} }{3}[/tex] = 4[tex]\sqrt{3}[/tex]