what is the value of x

Answer:
[tex]x=11^{o}[/tex]
Step-by-step explanation:
Assuming this rectangle is parallel to be defined as a parallelogram, angles opposite to each other are congruent. Such as D=F and E=G
Sum of interior angle formula
[tex]sum=(n-2)180^{o}[/tex]
n = number of sides
Find sum of interior angles
[tex]sum=(4-2)180^{o}\\sum=(2)180^{o} \\sum=360^{o}[/tex]
X Formula
[tex]180^{o}=E+F+D+G[/tex]
[tex]E=(5x)^{o}\\D=(2x+12)^{o}\\G=E\\F=D[/tex]
Solve for x
[tex]180^{o}=(5x)+(2x+12)+(5x)+(2x+12)\\180^{o}=5x+2x+12+5x+2x+12\\180^{o}=14x+24\\180^{o}(-24)=14x+24(-24)\\156^{o}=14x\\156^{o}(\frac{1}{14} )=14x(\frac{1}{14} )\\11.1^{o}=x\\x=11^{o}[/tex]