Respuesta :

Answer:

The first transformation occurs when we add a constant d to the parent function \displaystyle f\left(x\right)={b}^{x}f(x)=b

​x

​​ , giving us a vertical shift d units in the same direction as the sign. For example, if we begin by graphing a parent function, \displaystyle f\left(x\right)={2}^{x}f(x)=2

​x

​​ , we can then graph two vertical shifts alongside it, using \displaystyle d=3d=3: the upward shift, \displaystyle g\left(x\right)={2}^{x}+3g(x)=2

​x

​​ +3 and the downward shift, \displaystyle h\left(x\right)={2}^{x}-3h(x)=2

​x

​​ −3. Both vertical shifts are shown in Figure 5.

Graph of three functions, g(x) = 2^x+3 in blue with an asymptote at y=3, f(x) = 2^x in orange with an asymptote at y=0, and h(x)=2^x-3 with an asymptote at y=-3. Note that each functions’ transformations are described in the text.

Figure 5

Observe the results of shifting \displaystyle f\left(x\right)={2}^{x}f(x)=2

​x

​​  vertically:

The domain, \displaystyle \left(-\infty ,\infty \right)(−∞,∞) remains unchanged.

When the function is shifted up 3 units to \displaystyle g\left(x\right)={2}^{x}+3g(x)=2

​x

​​ +3:

The y-intercept shifts up 3 units to \displaystyle \left(0,4\right)(0,4).

The asymptote shifts up 3 units to \displaystyle y=3y=3.

The range becomes \displaystyle \left(3,\infty \right)(3,∞).

When the function is shifted down 3 units to \displaystyle h\left(x\right)={2}^{x}-3h(x)=2

​x

​​ −3:

The y-intercept shifts down 3 units to \displaystyle \left(0,-2\right)(0,−2).

The asymptote also shifts down 3 units to \displaystyle y=-3y=−3.

The range becomes \displaystyle \left(-3,\infty \right)(−3,∞).

Graphing a Horizontal Shift

The next transformation occurs when we add a constant c to the input of the parent function \displaystyle f\left(x\right)={b}^{x}f(x)=b

​x

​​ , giving us a horizontal shift c units in the opposite direction of the sign. For example, if we begin by graphing the parent function \displaystyle f\left(x\right)={2}^{x}f(x)=2

​x

​​ , we can then graph two horizontal shifts alongside it, using \displaystyle c=3c=3: the shift left, \displaystyle g\left(x\right)={2}^{x+3}g(x)=2

​x+3

​​ , and the shift right, \displaystyle h\left(x\right)={2}^{x - 3}h(x)=2

​x−3

​​ . Both horizontal shifts are shown in Figure 6.

Graph of three functions, g(x) = 2^(x+3) in blue, f(x) = 2^x in orange, and h(x)=2^(x-3). Each functions’ asymptotes are at y=0Note that each functions’ transformations are described in the text.

Figure 6

Observe the results of shifting \displaystyle f\left(x\right)={2}^{x}f(x)=2

​x

​​  horizontally:

The domain, \displaystyle \left(-\infty ,\infty \right)(−∞,∞), remains unchanged.

The asymptote, \displaystyle y=0y=0, remains unchanged.

The y-intercept shifts such that:

When the function is shifted left 3 units to \displaystyle g\left(x\right)={2}^{x+3}g(x)=2

​x+3

​​ , the y-intercept becomes \displaystyle \left(0,8\right)(0,8). This is because \displaystyle {2}^{x+3}=\left(8\right){2}^{x}2

​x+3

​​ =(8)2

​x

​​ , so the initial value of the function is 8.

When the function is shifted right 3 units to \displaystyle h\left(x\right)={2}^{x - 3}h(x)=2

​x−3

​​ , the y-intercept becomes \displaystyle \left(0,\frac{1}{8}\right)(0,

​8

​1

​​ ). Again, see that \displaystyle {2}^{x - 3}=\left(\frac{1}{8}\right){2}^{x}2

​x−3

​​ =(

​8

​1

​​ )2

​x

​​ , so the initial value of the function is \displaystyle \frac{1}{8}

​8

​1

​​ .

A GENERAL NOTE: SHIFTS OF THE PARENT FUNCTION \DISPLAYSTYLE F\LEFT(X\RIGHT)={B}^{X}F(X)=B

​X

​​

For any constants c and d, the function \displaystyle f\left(x\right)={b}^{x+c}+df(x)=b

​x+c

​​ +d shifts the parent function \displaystyle f\left(x\right)={b}^{x}f(x)=b

​x

​​

vertically d units, in the same direction of the sign of d.

horizontally c units, in the opposite direction of the sign of c.

The y-intercept becomes \displaystyle \left(0,{b}^{c}+d\right)(0,b

​c

​​ +d).

The horizontal asymptote becomes y = d.

The range becomes \displaystyle \left(d,\infty \right)(d,∞).

The domain, \displaystyle \left(-\infty ,\infty \right)(−∞,∞), remains unchanged.

HOW TO: GIVEN AN EXPONENTIAL FUNCTION WITH THE FORM \DISPLAYSTYLE F\LEFT(X\RIGHT)={B}^{X+C}+DF(X)=B

​X+C

​​ +D, GRAPH THE TRANSLATION.

Draw the horizontal asymptote y = d.

Identify the shift as \displaystyle \left(-c,d\right)(−c,d). Shift the graph of \displaystyle f\left(x\right)={b}^{x}f(x)=b

​x

​​  left c units if c is positive, and right \displaystyle cc units if c is negative.

Shift the graph of \displaystyle f\left(x\right)={b}^{x}f(x)=b

​x

​​  up d units if d is positive, and down d units if d is negative.

State the domain, \displaystyle \left(-\infty ,\infty \right)(−∞,∞), the range, \displaystyle \left(d,\infty \right)(d,∞), and the horizontal asymptote \displaystyle y=dy=d.

Step-by-step explanation:

Otras preguntas